Core 3 Numerical Methods Questions

2 Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to

$$\int_1^3 \frac{1}{\sqrt{1+x^3}} \, \mathrm{d}x$$

giving your answer to three significant figures.

(4 marks)

6 [Figure 1, printed on the insert, is provided for use in this question.]

The curve $y = x^3 + 4x - 3$ intersects the x-axis at the point A where $x = \alpha$.

(a) Show that α lies between 0.5 and 1.0.

(2 marks)

- (b) Show that the equation $x^3 + 4x 3 = 0$ can be rearranged into the form $x = \frac{3 x^3}{4}$.
- (c) (i) Use the iteration $x_{n+1} = \frac{3 x_n^3}{4}$ with $x_1 = 0.5$ to find x_3 , giving your answer to two decimal places. (3 marks)
 - (ii) The sketch on **Figure 1** shows parts of the graphs of $y = \frac{3 x^3}{4}$ and y = x, and the position of x_1 .

On **Figure 1**, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_2 and x_3 on the x-axis. (3 marks)

- 1 The curve $y = x^3 x 7$ intersects the x-axis at the point where $x = \alpha$.
 - (a) Show that α lies between 2.0 and 2.1.

(2 marks)

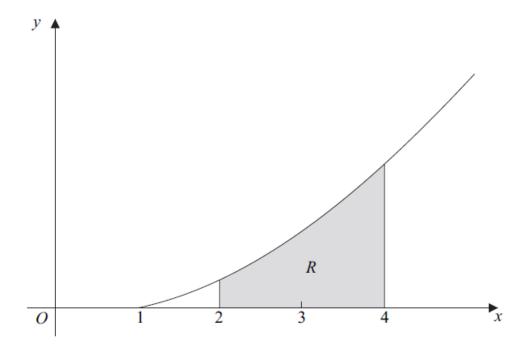
- (b) Show that the equation $x^3 x 7 = 0$ can be rearranged in the form $x = \sqrt[3]{x + 7}$.
- (c) Use the iteration $x_{n+1} = \sqrt[3]{x_n + 7}$ with $x_1 = 2$ to find the values of x_2 , x_3 and x_4 , giving your answers to three significant figures. (3 marks)

(c) The region R is bounded by the curve $y = \sec x$, the x-axis and the lines x = 0 and x = 1.

Find the volume of the solid formed when R is rotated through 2π radians about the x-axis, giving your answer to three significant figures. (3 marks)

1 Use the mid-ordinate rule with four strips of equal width to find an estimate for $\int_{1}^{5} \frac{1}{1 + \ln x} dx$, giving your answer to three significant figures. (4 marks)

(b) The diagram shows the curve with equation $y = 2\sqrt{(x-1)^3}$ for $x \ge 1$.



The shaded region R is bounded by the curve $y = 2\sqrt{(x-1)^3}$, the lines x = 2 and x = 4, and the x-axis.

- Find the exact value of the volume of the solid formed when the region R is rotated through 360° about the x-axis. (4 marks)
- (c) Describe a sequence of **two** geometrical transformations that maps the graph of $y = \sqrt{x^3}$ onto the graph of $y = 2\sqrt{(x-1)^3}$. (4 marks)
- 4 [Figure 1, printed on the insert, is provided for use in this question.]
 - (a) Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to $\int_{1}^{2} 3^{x} dx$, giving your answer to three significant figures. (4 marks)
 - (b) The curve $y = 3^x$ intersects the line y = x + 3 at the point where $x = \alpha$.
 - (i) Show that α lies between 0.5 and 1.5. (2 marks)
 - (ii) Show that the equation $3^x = x + 3$ can be rearranged into the form

$$x = \frac{\ln(x+3)}{\ln 3} \tag{2 marks}$$

- (iii) Use the iteration $x_{n+1} = \frac{\ln(x_n + 3)}{\ln 3}$ with $x_1 = 0.5$ to find x_3 to two significant figures. (2 marks)
- (iv) The sketch on Figure 1 shows part of the graphs of $y = \frac{\ln(x+3)}{\ln 3}$ and y = x, and the position of x_1 .

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_2 and x_3 on the x-axis. (2 marks)

Figure 1 (for Question 6)

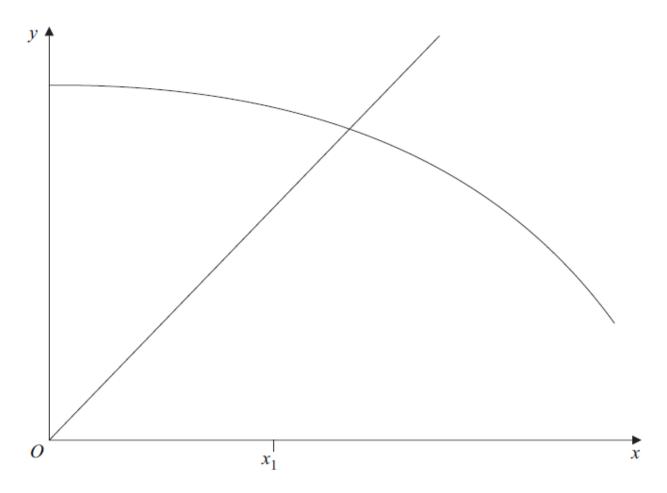
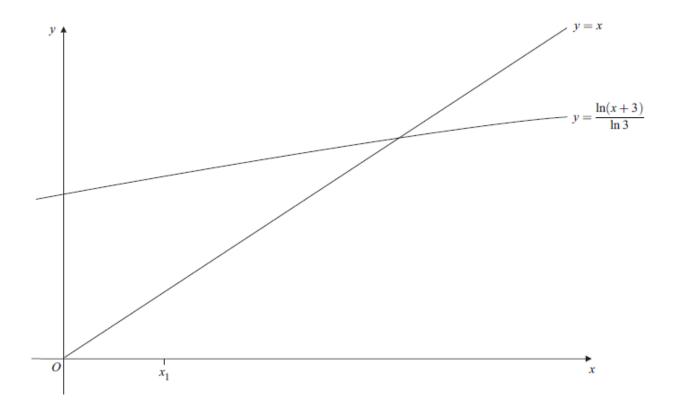


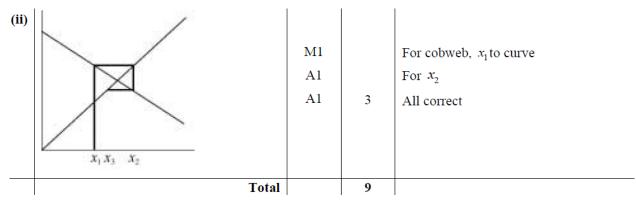
Figure 1 (for use in Question 4)



Core 3 Numerical Methods Answers

2	$\int_{1}^{3} \frac{1}{\sqrt{1+x^3}} \mathrm{d}x$			
	$ \frac{x}{1} = \frac{y}{0.707(1)} $ 1.5 0.478(1)	В1		3 correct SC B1 for all correct expressions but
	2 0.333(3) 2.5 0.245(3) 3 0.189(0)	В1		all correct wrongly evaluated
	3 0.105(0)			
	$A = \frac{1}{3} \times 0.5 \left[\frac{y(1) + y(3) + y(2.5)}{4(y(1.5) + y(2.5)) + 2(y(2))} \right]$	M1		use of Simpson's rule
	= 0.743	A1	4	
	Total		4	

6(a)	f(0.5) = -0.875 $f(1) = 2$ Change of sign : root	M1		
	f(1) = 2	A 1	2	
		A1	2	
(b)	$x^3 + 4x - 3 = 0$			
	$4x = 3 - x^3$	B1	1	
	$x^{3} + 4x - 3 = 0$ $4x = 3 - x^{3}$ $x = \frac{3 - x^{3}}{4}$			AG
(c)(i)	$x_1 = 0.5$	M1		
	$x_1 = 0.5$ $x_2 = 0.71875$ 0.72 AWRT $x_3 = 0.66$	A1		
	$x_3 = 0.66$	A1	3	



1(a)	f(2) = -1			
	$ \begin{cases} f(2) = -1 \\ f(2.1) = +0.161 \end{cases} $	M1		both attempted
	change of sign $\therefore 2 < \alpha < 2.1$	A1	2	
(b)	$x^3 - x - 7 = 0$ $x^3 = x + 7$			
	$x = x + 7$ $x = \sqrt[3]{x+7}$	B1	1	AG
	,			
(c)	$x_1 = 2$	M1		
	$x_2 = 2.0801$	A1		AWRT 2.08
	$x_3 = 2.0862$ $x_4 = 2.09$			AWRT 2.09
	$x_4 = 2.09$	A1	3	
	Total		6	

6(a)
$$\therefore \int \ln x = 1(\ln 1.5 + \ln 2.5 + \ln 3.5 + \ln 4.5)$$
 | M1 A1 | use of 1.5, 2.5,...; 3 or 4 correct x values AWFW 4 to 4.2 | CAO

(c)
$$V = (k) \int \sec^2 x \, dx$$

 $= (k) [\tan x]_0^1$
 $= 4.89$

M1
A1
A1
A1
A1
A1

1	x = 1.5, 2.5, 3.5, 4.5		M1		Method x values
	$y_1 = 0.7115$ 0.712 $y_2 = 0.5218$ 0.522 $y_3 = 0.4439$ 0.444 $y_4 = 0.3993$ 0.399 $A = 1 \times (y_1 + y_2 + y_3 + y_4)$	AWRT	A1		3 correct y's
	= 2.08		A1	4	
		Total		4	

8(a)	$A(-1,\pi)$	B1		
(b)	$B\left(0,\frac{\pi}{2}\right)$	В1	2	
(b)	$\cos^{-1} x - 3x - 1 = 0$	3.61		
	f(0.1)=0.17 allow 0.2, 0.1	M1		Or comparing 'sides'
	f(0.2) = -0.23 allow -0.2			
	Change of sign∴ root	A1	2	
(c)	$x_1 = 0.1$	M1		
	$x_2 = 0.1569 = 0.157$	A1		
	$x_3 = 0.1378 = 0.138$			
	$x_4 = 0.144$	A1	3	
	Total		7	

(b)
$$V = 4 (\pi) \int_{2}^{4} (x-1)^{3} dx$$
 M1 $(\pi) \int_{2}^{4} y^{2} dx$

$$= 4\pi \left[\frac{(x-1)^{4}}{4} \right]_{2}^{4}$$
 M1 $k(x-1)^{4} (\pi)$ or in expanded form correct substitution of limits into $k(x-1)^{4}$

$$= \pi(81-1) = 80\pi$$
 A1 4 CAO

(c) Translate E1 B1 OE

Stretch (I) SF 2 (II) M1 for I and (II or III) for I and III of III of I and III of III of

4(a)
$$\begin{vmatrix} x_0 & 1 & 3 \\ x_1 & 1.25 & 3.948(2) \\ x_2 & 1.5 & 5.196(2) \\ x_3 & 1.75 & 6.838(5) \\ x_4 & 2 & 9 \\ A = \frac{1}{3} \times \frac{1}{4} (3 + 4 \times 3.9482 + 2 \times 5.1962 \\ + 4 \times 6.8385 + 9) = 5.46 \\ \text{(b)(i)} \quad f(x) = 3^x - x - 3 \\ f(0.5) = -1.77 \\ f(1.5) = 0.696 \end{vmatrix} \text{ change of sign} \therefore \text{ root} \qquad \text{M1A1} \qquad 2$$

(ii)	$3^{x} = x + 3$ $\ln 3^{x} = \ln (x+3)$	M1		correct use of logs
	$x \ln 3 = \ln(x+3)$ $x = \frac{\ln(x+3)}{\ln 3}$	A1	2	correct with no mistakes; AG
(iii)	$x_1 = 0.5$ ($x_2 = 1.14$) $x_3 = 1.29 = 1.3$	M1 A1	2	CAO
(iv)	y=x			
	$y = \frac{\ln(x+3)}{\ln 3}$	M1		staircase
		A1	2	x_2 , x_3 correct and labelled on x-axis

Total

12

 X_2 X_3